首页> 外文OA文献 >U.S. Space Radioisotope Power Systems and Applications: Past, Present and Future
【2h】

U.S. Space Radioisotope Power Systems and Applications: Past, Present and Future

机译:美国太空放射性同位素动力系统和应用:过去,现在和未来

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Radioisotope power systems (RPS) have been essential to the U.S. exploration of outer space. RPS have two primary uses: electrical power and thermal power. To provide electrical power, the RPS uses the heat produced by the natural decay of a radioisotope (e.g., plutonium-238 in U.S. RPS) to drive a converter (e.g., thermoelectric elements or Stirling linear alternator). As a thermal power source the heat is conducted to whatever component on the spacecraft needs to be kept warm; this heat can be produced by a radioisotope heater unit (RHU) or by using the excess heat of a radioisotope thermoelectric generator (RTG). As of 2010, the U.S. has launched 41 RTGs on 26 space systems. These space systems have ranged from navigational satellites to challenging outer planet missions such as Pioneer 10/11, Voyager 1/2, Galileo, Ulysses, Cassini and the New Horizons mission to Pluto. In the fall of 2011, NASA plans to launch the Mars Science Laboratory (MSL) that will employ the new Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) as the principal power source. Hundreds of radioisotope heater units (RHUs) have been launched to provide warmth to Apollo 11, used to provide heating of critical components in a seismic experiment package, Pioneer 10/11, Voyager 1/2, Galileo, Cassini, Mars Pathfinder, MER rovers, etc. to provide temperature control to critical spacecraft electronics and other mechanical devices such as propulsion system propellant valves. A radioisotope (electrical) power source or system (RPS) consists of three basic elements: (1) the radioisotope heat source that provides the thermal power, (2) the converter that transforms the thermal power into electrical power and (3) the heat rejection radiator. Figure 1 illustrates the basic features of an RPS. The idea of a radioisotope power source follows closely after the early investigations of radioactivity by researchers such as Henri Becquerel (1852-1908), Marie Curie (1867-1935), Pierre Curie (1859-1906) and R. J. Strut. Almost 100 years ago, in 1913, English physicist H. G. J. Moseley (1887-1915) constructed the first nuclear battery using a vacuum flask and 20 mCi of radium (Corliss and Harvey, 1964, Proceedings of the Royal Society, 1913). After World War II, serious interest in radioisotope power systems in the U.S. was sparked by studies of space satellites such as North American Aviation s 1947 report on nuclear space power and the RAND Corporation s 1949 report on radioisotope power. (Greenfield, 1947, Gendler and Kock, 1949). Radioisotopes were also considered in early studies of nuclear-powered aircraft (Corliss and Harvey, 1964). In 1951, the U.S. Atomic Energy Commission (AEC) signed several contracts to study a 1-kWe space power plant using reactors or radioisotopes. Several of these studies, which were completed in 1952, recommended the use of RPS. (Corliss and Harvey, 1964). In 1954, the RAND Corporation issued the summary report of the Project Feedback military satellite study in which radioisotope power was considered (Lipp and Salter, 1954, RAND). Paralleling these studies, in 1954, K. C. Jordan and J. H. Birden of the AEC s Mound Laboratory conceived and built the first RTG using chromel-constantan thermocouples and a polonium-210 (210Po or Po-210) radioisotope heat source (see Figure 2). While the power produced (1.8 mWe) was low by today s standards, this first RTG showed the feasibility of RPS. A second thermal battery was built with more Po-210, producing 9.4 mWe. Jordan and Birden concluded that the Po-210 thermal battery would have about ten times the energy of ordinary dry cells of the same mass (Jordan and Birden, 1954). The heat source consisted of a 1-cm-diameter sphere of 57 Ci (1.8 Wt) of Po-210 inside a capsule of nickel-coated cold-rolled steel all inside a container of Lucite. The thermocouples were silver-soldered chromel-constantan. The thermal battery produced 1.8 mWe.
机译:放射性同位素动力系统(RPS)对于美国探索外太空至关重要。 RPS有两个主要用途:电力和火力。为了提供电能,RPS使用放射性同位素(例如,美国RPS中的p238)的自然衰变产生的热量来驱动转换器(例如,热电元件或斯特林线性交流发电机)。作为热源,热量被传导到航天器上需要保暖的任何部件。可以通过放射性同位素加热器单元(RHU)或通过使用放射性同位素热电发生器(RTG)的多余热量来产生这种热量。截至2010年,美国已在26个太空系统上发射了41个RTG。这些空间系统的范围从导航卫星到具有挑战性的外星球任务,例如先锋10/11,旅行者1/2,伽利略,尤利西斯,卡西尼号和新视野到冥王星的任务。 NASA计划在2011年秋季启动火星科学实验室(MSL),该实验室将使用新型的多任务放射性同位素热电发生器(MMRTG)作为主要电源。发射了数百个放射性同位素加热器单元(RHU),以为Apollo 11提供热量,该Apollo 11用于为地震实验包中的关键组件提供加热,Pioneer 10/11,Voyager 1/2,Galileo,Cassini,Mars Pathfinder和MER流浪者等,为关键的航天器电子设备和其他机械设备(如推进系统推进剂阀门)提供温度控制。放射性同位素(电)电源或系统(RPS)由三个基本元素组成:(1)提供热能的放射性同位素热源,(2)将热能转换为电能的转换器,以及(3)热量拒绝散热器。图1说明了RPS的基本功能。放射性同位素动力源的想法紧随Henri Becquerel(1852-1908),Marie Curie(1867-1935),Pierre Curie(1859-1906)和R.J. Strut。差不多100年前,即1913年,英国物理学家H. G. J. Moseley(1887-1915)用真空瓶和20 mCi的镭建造了第一个核电池(Corliss和Harvey,1964,皇家学会学报,1913)。第二次世界大战后,太空卫星的研究引起了美国对放射性同位素动力系统的强烈兴趣,例如北美航空1947年的核空间动力报告和兰德公司1949年的放射性同位素动力报告。 (格林菲尔德,1947年;根德勒和科克,1949年)。在核动力飞机的早期研究中也考虑了放射性同位素(Corliss and Harvey,1964)。 1951年,美国原子能委员会(AEC)签署了几份合同,研究使用反应堆或放射性同位素的1 kWe空间发电厂。其中一些研究(于1952年完成)建议使用RPS。 (Corliss and Harvey,1964)。 1954年,兰德公司发布了“项目反馈”军事卫星研究的摘要报告,其中考虑了放射性同位素功率(Lipp和Salter,1954,兰德)。与这些研究并驾齐驱的是1954年,AEC土墩实验室的K. C. Jordan和J. H. Birden构思并建造了第一台使用铬-康斯坦坦热电偶和a 210(210Po或Po-210)放射性同位素热源的RTG(见图2)。尽管按今天的标准,所产生的功率(1.8 mWe)较低,但第一个RTG显示了RPS的可行性。使用更多Po-210制造第二个热电池,产生9.4 mWe。 Jordan和Birden得出结论,Po-210热电池的能量大约是相同质量的普通干电池的十倍(Jordan和Birden,1954)。该热源由直径为57 cm(1.8 Wt)的Po-210的1厘米直径的球体组成,该球体位于一个Lucite容器内的一个镀镍冷轧钢胶囊中。热电偶是银焊的铬-康斯坦坦。热电池产生1.8 mWe。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号